
Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 10 (December 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i10.pp35 - 45

Published by: Longman Publishers www.jst.org.in Page | 35

The Dagstuhl Middle Meta model: A Schema

For Reverse Engineering
Dr.A.Kalayan Chakravathi, S.Govinda Raju, B.Govinda rao

Professor
1, Assistant Professor

2,3,

Dept. of CSE,

mail-id:skraj999@gmail.com, mail-id:banothu.govind3@gmail.com

Anurag Engineering College,Anatagiri(V&M),Suryapet(Dt),Telangana-508206

 To Cite this Article
Dr.A.Kalayan Chakravathi, S.Govinda Raju, B.Govinda rao , The Dagstuhl Middle

Metamodel: A Schema For Reverse Engineering” Journal of Science and

Technology, Vol. 0,7 Issue 10, December 2022, pp35-45

Article Info
Received: 09-10-2022 Revised: 10-11-2022 Accepted: 10-12-2022 Published: 27-12-2022

Abstract

The Dagstuhl Middle Metamodel (DMM) is an extensible schema for static models of software. It
is a middle-level metamodel since it captures program level entities and their relationships, rather
than a full abstract syntax graph (lower level), or architectural abstractions (higher level). DMM
can be used to represent models extracted from software written in most common object -oriented and
procedural languages. This paper presents the main features of DMM.

Keywords: Metamodelling, Static Analysis, Exchange Formats, DMM, Reverse Engineering

Introduction

To enable software re-engineering tools to fully interoperate, an agreed-upon exchange

format must be available. Many different parsers, shareable reposi- tories or databases,
as well as analysis tools could then work together.
An exchange format needs both a schema (i.e. a metamodel) describing the objects and

relationships, as well as a „carrier‟ syntax describing how model elements will be
transmitted or stored. This paper discusses the metamodel, leaving aside the question of
syntactic form. For the latter we suggest TA [1] or GXL [2].

There have been many suggestions for metamodels to represent the static structure of
source code. The metamodel presented here derives from pre- decessor work at several

universities, e.g. [3] [4] [5] [6]. Ideas from these predecessors were incorporated into
what was originally called the “Dagstuhl Middle Model” (DMM) at the Dagstuhl
Seminar on Interoperability of Re- engineering Tools, Jan 22-26, 2001 [7]. Since then,

there have been several revisions of DMM, and the final letter now stands for
„Metamodel‟.
This paper discusses the main features of DMM version 0.007; additional information

can be found at [8]. The version number will be changed to 1.0 if and when a
commercial vendor supports DMM.

There have been several practical uses of DMM. For example, Moise and Wong [9] used
it in an industrial reverse engineering case study. There is also a tool on the web [10]

http://www.jst.org.in/
http://www.jst.org.in/

SourceObject
* *

ModelObject Relationship

ModelElement ModelRelationship

SourceModelRelationship

SourceRelationship

BehaviouralElement StructuralElement

that will take any C++ source code and convert it into DMM using GXL syntax. Several
projects are also building schemas that extend or connect with DMM (e.g. [11]).

DMM is a middle metamodel since it represents neither complete syntax of code (lower
metamodels) nor abstract architectural elements (higher meta- models). It represents the
main program elements and their relationships.

DMM has been reasonably stable, so researchers may experiment with using it in
interoperable tools without being concerned about large changes. We do, however,

anticipate some further evolution. Our objective would be that it becomes a defacto
standard in the community.
In the next section we present an overview of DMM. Section 3 then presents some of the

main design decisions it embodies. Finally, Section 4 discusses some of the directions
for future work.

Overview of DMM

DMM can represent information about the source code of most popular pro-

gramming languages, ranging from C, C++ and Java to Fortran. It does

not handle aspects of less widely used languages (such as functional or logic

languages), although extensions could be created to handle these.

DMM does not represent programs completely; i.e. it does not store the

abstract syntax tree. Nor does it represent very high-level architectural ele- ments

like pipes, filters, clients, servers, etc. Other types of metamodels can be used for

these low-level and high-level models, respectively. DMM is intended to be used

for middle-level models. There is nothing in DMM, however, that precludes

extensions which address high-level or lower-level concerns.

DMM is described using the four UML class diagrams shown in Figures 1

through 4. As is conventional in UML, abstract classes are shown in italics.

The four diagrams are as follows:

Figure 1 is a top level view, showing how the other three figures fit together. It
shows the three classes at the top of the hierarchies: SourceObject (representing
high level syntactic entities specific to a particular piece of source code),

ModelObject (representing conceptual entities that would exist even if the code
were translated into a different language), and Rela- tionship.

Figure 1. Top-level classes in DMM

Figure 2 shows the subclasses of ModelObject, and their associations. The most
important thing to notice about this hierarchy is the division between StructuralElement

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 10 (December 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i10.pp35 - 45

Published by: Longman Publishers www.jst.org.in Page | 37

and BehavioralElement. StructuralElement has such subclasses as Variable and Type,
of which Class is a further subclass. The main subclass of BehavioralElement is

Routine, of which Method is a further subclass.
Figure 3 shows the subclasses of SourceObject, and their associations. The most
important SourceObject subclasses are SourceFile and Source- Unit (the latter being

used to represent blocks of code editable by the user
in repository based environments that don‟t store code as a collection of files). It is
possible to entirely omit SourceObjects other than Source- File or SourceUnit. In the

next section we will see that this is one of the ways in which DMM is designed to be
flexible. However, most implemen- tations will want to add instances of other

SourceObject subclasses such as MacroDefinitions or objects that specify where in a
given SourceFile or SourceUnit any given ModelObject is defined or declared.
Figure 4 shows the Relationship classes. These are all UML association classes arranged

in a generalization hierarchy. The domain and range of each relationship is shown in
each class box 5 . The relationships are di- vided into SourceRelationship,
ModelRelationship and SourceMod- elRelationship. The most important

ModelRelationship subclasses are Invokes (to model caller-callee relationships), various
IsPartOf relation- ships such as IsMethodOf and IsFieldOf, as well as the Accesses re-

lationship (e.g. to model which Routines access which Variables; this will be discussed
further later). The ModelRelationships also appear as association labels in Figure 1. The
Includes relationship is a key subclass of SourceRelationship, i.e. it is a relationship

between SourceObjects. Defines and Declares are the main subclasses of
SourceModelRela- tionship. The ‟inheritanceType‟ attribute indicates whether
inheritance is private, public, protected, etc. as in C++.

5 This is a departure from UML syntax, but is very helpful in making the DMM
diagrams more expressive. Normally, only attributes and operations appear in class
boxes.

0..1 defines 0..1
ModelObject

0..1 declares

*

SourceObject
name

http://www.jst.org.in/
http://www.jst.org.in/

Figure 2: The DMM ModelObject hierarchy. ModelObjects

represent program-level entities, independent of any particular

source code.

Experience has shown that the intent behind most DMM classes is reason-

ably clear to developers building DMM-based reverse engineering systems.

Such developers would generally create a parser or scanner for the source code

of the programming languages they are interested in. They would then

build data structures representing instance of the various DMM classes.

The next section explains some aspects of DMM in more detail.

contains

*

isSubpackageOf

* 0..1
invokes

accesses * *

0..1
Package

*

StructuralElement
*

*
BehaviouralElement

1

imports

*

*
Type

0..1 *
isDefinedInTermsOf

hasValue ExecutableValue

0..1

0..1

isParameterOf

1..*

CollectionType

size

isEnumerationLiteralOf
*

EnumerationLiteral

Method

isConstructor
isDestructor
isAbstract
isDynamicallyBound
isOverideable
visibility

*

StructuredType

*

FormalParameter

position

Routine

1 isFieldOf
* Field

visibility

* Class

isSubclassable

0..1 isMethodOf

* *
inheritsFrom

EnumeratedType
Variable

Value
isOfType

visibility

ModelRelationship ModelElement

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 10 (December 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i10.pp35 - 45

Published by: Longman Publishers www.jst.org.in Page | 39

contains *

1

*
1

describes

*
SourceUnit

*

*
path includes

*

1

isExpansionOf

Reference Declaration
name

MacroDefinition

name name

Comment Resolvable Definition MacroArgument MacroExpansion

SourceFile

startLine

startChar

endLine

endChar

name
SourcePart

SourceObject
ModelObject

Method

Class

EnumerationLiteral

EnumeratedType

Field

StructuredType

IsFieldOf IsMethodOf IsEnumerationLiteralOf

IsPartOfSignatureOf

Class

Class

ModelElement

Invokes

Type

Type

BehaviouralElement

StructuralElement

Value

Type

BehavioralElement

BehavioralElement

inheritanceType

IsActualParameterOf IsDefinedInTermsOf Accesses IsOfType Invokes isPartOf inheritsFrom

SourceObject

ModelObject

SourceObject

SourceObject

ModelElement

ModelElement

SourceModelRelationship SourceRelationship ModelRelationship

Declares Defines

Relationship

*

Figure 3: The DMM SourceObject hierarchy. These represent chunks of

source code.

IsExpansionOf Describes Includes Contains

MacroExpansion

MacroDefinition

Comment

SourceObject

SourceFile

SourceFile

SourceUnit

SourcePart

IsParameterOf

isReturnTypeOf

FormalParameter

BehaviouralElement

Type

BehaviouralElement

Figure 4: The DMM Relationship hierarchy. All classes are association classes, and

show the domain and range.

Key DMM Design Decisions

The structure of the Dagstuhl Middle Metamodel was derived after several

key decisions were made. These are detailed below.

 Separation of source and other elements

http://www.jst.org.in/
http://www.jst.org.in/

DMM separates objects representing source code (class SourceObject and its

subclasses) from those representing abstract elements of a program or sys-

tem (class ModelObject and its subclasses). This is illustrated at the top of

Figure 1. The two separate hierarchies are shown in Figures 2 and 3.

Such a separation is very useful in reengineering tools, since it facilitates:

• Modelling of the various syntactic representations or references to the same

software element, e.g. a Definition, several Declarations, and numerous

References, (places where Accesses or invocations occur in the code).

• Mapping of the same software into different source representations (e.g. before

and after restructuring or editing, or even after translation from one language

to another).

• Ignoring of the source code when necessary. For example building abstract

models of class hierarchies without reference to implementation in any lan-

guage.

• Dealing with source-level (pre-compilation) information such as

Comments and MacroDefinitions that have no existence in the compiled

version of code. This has been found to be particularly important to make

reverse- engineering and re-engineering tools useful and adoptable. Our

studies have shown [12] that maintainers want to see models of the actual

code, not code after it has already been pre-processed. Models based on DMM

have been found particularly useful for searching through large volumes of

code; tools that facilitate this must provide search results as pointers to

locations in the actual non-preprocessed source.

Some users of DMM may elect to simplify their models by omitting all

but the most essential SourceObjects. Rather than storing one or more

SourceObjects for every single ModelObject (e.g. specifying where in a

file each variable, method, invocation etc. is located), one could just store

the SourceObjects corresponding to top-level ModelObjects (i.e. just the

Classes). If this option is chosen, then tools using such models will not be able

to pinpoint the exact location in files of lower-level ModelObjects without

further searching; such searching can, however, be done easily in near real time.

Implementations of DMM that take the above simplifying option can rep-

resent the needed SourceObjects (instances of SourceFile) simply as string

attributes of the respective ModelObjects.

An interesting issue that arose when storing source code information was

how, in the SourcePart class, to store pointers to the start and end of blocks

of source code text. One strategy is to use character offsets from the beginning of

a file. This makes seeking to a particular character easy in some program-

ming languages. The choice that was instead made is to use line number plus

character offset in the line. This has the advantage that no confusion arises

when the size of lines in a file change due to the different line-ending

conventions (i.e. CR vs. CR/LF).

 Inclusiveness of multiple languages, including OO and non-OO languages

DMM can represent the key features of systems written in object-oriented

languages such as C++, Smalltalk and Java. But it can just as easily represent

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 10 (December 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i10.pp35 - 45

Published by: Longman Publishers www.jst.org.in Page | 41
 TakesAddressOfComponent UsesComponent SetsComponent

TakesAddressOf Uses Sets

BehaviouralElement

StructuralElement

Accesses

SetsObject TakesAddressOfObject UsesObject

non-object-oriented systems written in imperative languages such as C and

Fortran.

To achieve this multi-language transparency, DMM generalizes several con-

cepts. For example, the notions of routine, function and subroutine are all

treated the same. Also, a Method is very much the same as a Routine except

that it has a relationship to a class. Similarly, a Class is a Struc- turedType

that has a few other features, such as methods. Although various programming

languages have minor semantic differences regarding how they implement these

ideas, DMM abstracts these differences away.

Some people have proposed even abstracting away the differences between

Method and Routine, as well as between StructuredType and Class. If

this were done, true structured types would be represented as classes that

happen not to have any methods. This simplification has not been made in the

current DMM version. A reason for keeping all four classes is that we believe

it helps people to understand DMM better.

Multi-language inclusiveness has many benefits for the user, including the

ability to work with multiple-language systems, and the ability to design tools

that work in the same way no matter what programming language is employed.

 A separate hierarchy of relationships

As discussed in Section 2, Figure 4 shows the hierarchy of Relationships.

Each of these is an association class which can therefore have its own at- tributes.

The presence of such a large hierarchy reflects the fact that in re- engineering,

relationships are as important at the things related.

As one moves down the hierarchy in Figure 4, the relationships become

more specialized. The domain of a sub-relationship is the same as or a sub-

classes of the domain of a higher-level relationship. The same is true of ranges.

Models using DMM do not have to represent information about each rela-

tionship shown. Also, if a model wants to model accesses, it could use either

the higher level Accesses relationship, or its more specific subclasses.

 Flexibility to allow for variants and extensions

DMM has several dimensions of flexibility:

• Any DMM class can be subclassed if needed. A tool importing DMM data

http://www.jst.org.in/
http://www.jst.org.in/

with subclasses it does not „understand‟ would still be able to interpret the

data as the appropriate superclass or superclasses. Figure 5 gives an example

of several subclasses of Accesses; not all tools will need or want to

support these, but they are available for tools that want to do more

sophisticated analysis. Figure 6 shows an extension to represent instances of

Property which can be treated as both variables (they can be accessed to

get or set their value) and methods (they can invoke other methods); properties

exist in various programming languages, such as Delphi.

Figure 5: Standard DMM extension to represent different types of access that

BehaviouralElements can make to StructuralElements.

Variable Method

Figure 6: Standard DMM extension to represent Properties, which are

program constructs found in several different programming languages.

• Instances of many DMM classes can be omitted in a valid model in order to

simplify the model. We already discussed in Section 2 how most SourceOb-

ject classes can be omitted. It would also be quite reasonable to generate

data without, for example, information about method parameters.

• New classes can be added to represent different types of information by cre-

ating associations to DMM classes. This is exactly what we did to represent

dynamic information in [11].

A schema that uses higher level DMM classes but omits some lower-level

classes and adds its own classes would be called a variant. A variant could be

consistent with DMM (the new classes represent different things than those

already in DMM), or inconsistent. An inconsistent variant might be needed if

DMM classes are not able to capture certain concepts and need to be substi-

tuted by classes with more representational power. However it would be better to

have an inconsistent variant that nevertheless reused some DMM classes, than

a model that was completely different (with unnecessary inconsistencies.) It

would be useful if all DMM-compliant tools were developed with an ability

to work as best as they can with data containing extensions and vari- ants,

and also with data that omits certain DMM classes. Data that contains

anything other than basic DMM will have to be transmitted along with its

schema. For example, a tool that reads data containing instances of Prop-

erty (Figure 6), but which does not know how to manipulate these instances

internally, would nevertheless be able to read the extended schema and process

them as separate instances of both Method and Variable.

 Robustness

A metamodel needs to be robust as opposed to fragile. Robustness means the

widest possible variety of tools can use it without the need for inconsistent

variants. We hope that robustness was increased by the fact that the devel- opers

of several metamodels got together and worked out a metamodel that could be

Property

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 10 (December 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i10.pp35 - 45

Published by: Longman Publishers www.jst.org.in Page | 43

used by all the groups. The fact that several projects have used DMM with

little change, is initial evidence for its robustness.

Conclusions and Future Work

DMM is a metamodel for software reverse engineering that has been proved in

practice to be useful. However there are still various areas for research that could

lead to changes or extensions. These are discussed below.

It will be important to continue to examine other metamodels to improve

DMM to the point where it achieves widespread acceptance. Examples of

metamodels that have been widely studied include Columbus [13] and the

UML metamodel [14]. Unlike DMM, Columbus is explicitly for C++. The

UML metamodel overlaps DMM in places; however, it is designed for

forward

engineering, and omits DMM‟s SourceObjects, and various other classes. It

is also rather more complex than what appears to be needed for simple reverse

engineering tools.

It might be useful to model certain features of programming languages that

DMM does not currently support. Examples include generic types (e.g. C++

templates), as well as concerns and aspects (from Aspect Oriented Pro-

gramming languages).

Finally, documents could be written giving a more precise semantics for

each class, and a mapping from various programming languages to DMM.

It has been proposed that in order for all the relationships to be modelled

consistently by all parsers and other tools, a reasonably formal specification

of each should be produced.

References

R. C. Holt, “An Introduction to TA: The Tuple Attribute Language”, Technical Report,
Department of Computer Science, University of Waterloo and University of Toronto,
1998.

R. C. Holt, A. Winter, A. Schu¨rr, “ GXL: Toward a Standard Exchange
Format”, Proc. 7 th Working Conference on Reverse Engineering (WCRE), 2000, 162-

171

S. Tichelaar, S. Ducasse, S. Demeyer, “FAMIX and XMI”, Working Conference on
Reverse Engineering, 2000. Nov. 2000, 296–298

S. Tichelaar, “Modeling Object-Oriented Software for Reverse Engineering and
Refactoring”, PhD. Thesis, University of Berne, 2001,
http://www.iam.unibe.ch/~scg/Archive/PhD/ tichelaar-phd.pdf.

http://www.jst.org.in/
http://www.jst.org.in/
http://www.iam.unibe.ch/~scg/Archive/PhD/tichelaar-phd.pdf
http://www.iam.unibe.ch/~scg/Archive/PhD/tichelaar-phd.pdf

T. Lethbridge, “Requirements and Proposal for a Software Information Exchange
Format”,

http://www.site.uottawa.ca/~tcl/papers/sief/standardProposal.html.

J. Czeranski, T. Eisenbarth, H. Kienle, R. Koschke, E. Pl¨odereder, D. Simon, J.-

F. Girard,
M. Wu¨rthner, “Data Exchange in Bauhaus”, Working Conference on Reverse

Engineering, WCRE 2000, November 23-25, Brisbane, Australia, IEEE Computer
Society Press, 2000.

Dagstuhl Seminar 01041, Interoperability of Reengineering Tools,
http://www.dagstuhl.de/ 01041/

DMM: The Dagstuhl Middle Metamodel. http://www.site.uottawa.ca/~tcl/dmm/

Moise, D, and Wong, K, “An Industrial Experience in Reverse Engineering”, proc.
Working Conference on Reverse Engineering, WCRE2003, November 2003, Victoria,
Canada, IEEE Computer Society Press.

C/C++ to GXL Converter Online, http://www.site.uottawa.ca:4333/parser_online/

Hamou-Lhadj, A. and Lethbridge, T.C., “A Metamodel for Dynamic Information of
Object- Oriented Systems”, Electronic Notes in Theoretical Computer Science (this

volume), expanded from a paper presented at 1st International Workshop on Meta-
models and Schemas for Reverse Engineering (ATEM), Victoria, Canada, 2003.

Singer, J., and Lethbridge T.C. (1998), “Studying Work Practices to Assist Tool Design
in Software Engineering”, 6th IEEE International Workshop on Program
Comprehension, Italy, 173-179. Ferenc, R., Besz´edes, A´., Tarkiainen, M., and

Gyimothy, T. “Columbus - Reverse Engineering Tool and Schema for C++”,
Internatioonal Conference on Software Maintenance: ICSM 2002, 172-181.

OMG, “OMG Unified Modeling Language Specification” version 1.5, March 2003,
http:// www.omg.org.

http://www.site.uottawa.ca/~tcl/papers/sief/%20standardProposal.html
http://www.dagstuhl.de/01041/
http://www.dagstuhl.de/01041/
http://www.site.uottawa.ca/~tcl/dmm/
http://www.omg.org/
http://www.omg.org/

